博客
关于我
输入两个正整数m 和n,求其最大公约数和最小公倍数 (Java经典编程案例)
阅读量:733 次
发布时间:2019-03-22

本文共 1031 字,大约阅读时间需要 3 分钟。

输入两个正整数m和n,求其最大公约数和最小公倍数

在编程中,求两个正整数的最大公约数(GCD)和最小公倍数(LCM)是一个常见的问题。本文将详细介绍一种高效的求解方法。

思路分析

最大公约数可以通过辗转相除法来求解。具体步骤如下:

  • 在循环中,只要除数不等于0,继续执行。
  • 将较大的数除以较小的数,取余数。
  • 将余数作为新的较小的数,将原来的较小的数作为新的较大的数。
  • 重复上述步骤,直到较小的数为0,此时较大的数即为最大公约数。
  • 最小公倍数则可以通过公式:最小公倍数 = 两个数的乘积 / 最大公约数来计算。
  • 代码示例

    以下是实现上述方法的Java代码:

    public class Example {  
    public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    System.out.print("请输入正整数m的值:");
    int m = scanner.nextInt();
    System.out.print("请输入正整数n的值:");
    int n = scanner.nextLong();
    int a = division(m, n);
    int b = (m / a) * n; // 可以直接使用 m * n / a 来计算
    System.out.println(m + "和" + n + "的最大公约数为:" + a + ",最小公倍数为:" + b);
    }
    public int division(int x, int y) {
    int temp;
    while (y != 0) {
    temp = x % y;
    x = y;
    y = temp;
    }
    return x;
    }
    }

    执行结果

    运行上述代码并输入两个正整数,程序将输出它们的最大公约数和最小公倍数。

    总结

    通过上述方法和代码,我们可以快速且高效地求解两个正整数的最大公约数和最小公倍数。这种方法不仅适用于编程,还可以在数学计算中得到实际应用。

    转载地址:http://vezwk.baihongyu.com/

    你可能感兴趣的文章
    NullPointerException Cannot invoke setSkipOutputConversion(boolean) because functionToInvoke is null
    查看>>
    null可以转换成任意非基本类型(int/short/long/float/boolean/byte/double/char以外)
    查看>>
    Number Sequence(kmp算法)
    查看>>
    Numix Core 开源项目教程
    查看>>
    numpy
    查看>>
    Numpy 入门
    查看>>
    NumPy 库详细介绍-ChatGPT4o作答
    查看>>
    NumPy 或 Pandas:将数组类型保持为整数,同时具有 NaN 值
    查看>>
    numpy 或 scipy 有哪些可能的计算可以返回 NaN?
    查看>>
    numpy 数组 dtype 在 Windows 10 64 位机器中默认为 int32
    查看>>
    numpy 数组与矩阵的乘法理解
    查看>>
    NumPy 数组拼接方法-ChatGPT4o作答
    查看>>
    numpy 用法
    查看>>
    Numpy 科学计算库详解
    查看>>
    Numpy.fft.fft和numpy.fft.fftfreq有什么不同
    查看>>
    numpy.linalg.norm(求范数)
    查看>>
    Numpy.ndarray对象不可调用
    查看>>
    Numpy.VisibleDeproationWarning:从不整齐的嵌套序列创建ndarray
    查看>>
    Numpy:按多个条件过滤行?
    查看>>
    Numpy:条件总和
    查看>>